Crystal and Molecular Structure of Tetrakis[copper(1) benzoate]

By Michael G. B. Drew,* Department of Chemistry, The University, Whiteknights, Reading RG6 2AD
Dennis A. Edwards ${ }^{\text {• and Roger Richards, School of Chemistry, University of Bath, Claverton Down, Bath }}$ BA2 7AY

Crystals of the title compound are triclinic, space group $P \overline{1}$, cell dimensions $a=15.408(7), b=13.784$ (12), $c=15.034(9) \AA, \alpha=92.43(6), \beta=62.34(5), \gamma=112.71(6)^{\circ}, Z=4.2262$ Independent reflections above background were collected by counter methods; the structure was solved by direct methods and refined by fullmatrix least squares to $R 0.064$. There are two independent tetramers in the asymmetric unit which have similar but not identical geometries in which four copper atoms form a parallelogram (internal angles 114.5, 65.5 and 108.8, 71.2° respectively in the two tetramers), with minimum $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of $2.71 \AA$. The four benzoates bridge adjacent $\mathrm{Cu} \cdots \mathrm{Cu}$ atoms around the parallelogram and are alternately above and below the plane. The $\mathrm{Cu}-\mathrm{O}$ distances are ca. 1.84 \AA.

Although copper(i) formate and acetate were first isolated over seventy years ago, ${ }^{1}$ it is only in the past few years that the chemistry of copper(I) carboxylates has been studied in any depth. This revival of interest stems from the knowledge that these compounds are involved as intermediates in decarboxylation reactions of organic acids ${ }^{2}$ and in synthetic procedures such as the formation of esters from organic acids and alkyl halides in the presence of copper(I) oxide. ${ }^{3}$ There has recently been some attention paid to the structural aspects of these compounds. Copper(I) acetate has been shown ${ }^{4}$ to be a planar polymeric molecule in which chains of

[^0]dinuclear units are linked together by further copperoxygen interactions. In the dinuclear units each acetate group bridges the two copper atoms to afford an eightmembered ring. On the other hand, the acetate group is chelating in the distorted tetrahedral complex [Cu $\left.\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{5}$ The benzene π-complex $\left[\left\{\mathrm{Cu}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CCF}_{3}\right)\right\}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]^{6}$ shows another structural variation in that the four copper atoms are disposed at the corners of a planar parallelogram with bridging trifluoroacetate groups arranged approximately perpendicular to the Cu_{4} plane. As a further example, we report here the structure of anhydrous copper(I) benzoate.
${ }^{4}$ M. G. B. Drew, D. A. Edwards, and R. Richards, J.C.S. Chem. Comm., 1973, 124; T. Ogura, R. D. Mounts, and Q. Fernando, J. Amer. Chem. Soc., 1973, 95, 949.
${ }_{5}$ M. G. B. Drew, A. H. bin Othman, D. A. Edwards, and R. Richards, Acta Cryst., 1975, B31, 2695.
${ }^{6}$ P. F. Rodesiler and E. L. Amma, J.C.S. Chem. Comm., 1974, 599.

EXPERIMENTAL

Preparation.-Copper(I) benzoate was prepared as before, ${ }^{7}$ a sample (1.0 g) being subsequently recrystallised from sodium-dried xylene (150 ml) containing benzoic acid (2.0 g) under strictly anaerobic conditions.

Crystal Data.- $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Cu}_{4} \mathrm{O}_{8}, M=740.08$, Triclinic, $a=$ 15.408(9), $b=13.784(12), c=15.034(9) \AA, \alpha=92.43(6)$, $\beta=62.34(5), \gamma=112.71(6)^{\circ}, U=2572.0 \AA^{3}, D_{\mathrm{m}}=1.89 \mathrm{~g}$ $\mathrm{cm}^{-3}, Z=4, D_{0}=1.91 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1456$. $\mathrm{Mo}-K_{\alpha}$ radiation, $\lambda=0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=34.4 \mathrm{~cm}^{-1}$, space group $P 1$ or $P \overline{1}$, confirmed as the latter by the successful refinement.
A crystal with dimension $c a .0 .12 \times 0.35 \times 0.45 \mathrm{~mm}$ was mounted with the ($\overline{\mathrm{I}} 30$) planes perpendicular to the instrument axis of a General Electric XRD 5 apparatus which was used to measure diffraction intensities and cell dimensions. It was equipped with a manual goniostat, scintillation counter, and pulse-height discriminator. Zirconiumfiltered molybdenum X-radiation was used. The stationary-crystal-stationary-counter method was used with a 4° takeoff angle and a counting time of 10 s . Individual backgrounds were taken from plots of background as a function of 2θ. 3650 independent reflections were measured with $2 \theta<40^{\circ}$, of which 2262 with $I>\sigma(I)$ were used in the refinement. Neither an absorption nor an extinction correction was made.
Structure Determination.-The positions of the eight independent copper atoms were obtained via direct methods using the SHEL-X set of programs ${ }^{8}$ after many unsuccessful attempts with other programs. Fourier syntheses were then calculated to determine the positions of the remaining atoms. The structure was refined in two large blocks (one for each tetramer) by least squares. The weighting scheme, chosen to give average values of $w \Delta^{2}$ for groups of reflections independent of the value of F_{0} and $\sin \theta / \lambda$, was $w^{\frac{1}{2}}=\mathbf{1}$ for
 were made on a CDC 7600 computer at the University of London Computer Centre using programs of refs. 8 and 9 , and with some of our own programs on an ICL 1904S at Reading University. Atomic scattering factors for Cu, O, C , and H were taken from ref. 10 as were the corrections for the real and imaginary part of the anomalous dispersion for copper. The anisotropic thermal factor was defined as $\left[-2 \pi^{2} \sum_{i} \sum_{j} U_{i j} h_{i} h_{j} b_{i} b_{j}\right] ; \quad(i, j=1,2,3), \quad b_{i}$ being the i 'th reciprocal cell dimension, and the isotropic thermal parameter as $\exp \left[-8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}\right]$. The Cu atoms were refined anisotropically, the O and C atoms isotropically. Also included in the structure-factor calculation but not refined were the 40 H atoms on the eight independent benzene rings. These were given thermal parameters equivalent to those of the atoms to which they were bonded and given ideal trigonal positions. In the final cycle of refinement ($R=0.064$) no shift was $>0.10 \sigma$. The 1388 reflections given zero weight showed no large discrepancies. There were no significant peaks in a final difference-Fourier map. Positional co-ordinates and thermal parameters, together with their standard deviations are given in Tables 1 and 2. Molecular dimensions are given in Table 3. Observed and
; D. A. Edwards and R. Richards, J.C.S. Dalton, 1973, 2463.
${ }^{8}$ G. M. Sheldrick, private communication.
' 'X-ray' system of crystallographic programs, July 1970 version, ed. J. M. Stewart, University of Maryland Technical Report TR 67 58, 1967.
${ }^{10}$ ' International Tables for X-ray Crystallography,' volume IV, The Kynoch Press, Birmingham, 1975.

Table 1
Atomic positions ($\times 10^{4}$) and isotropic thermal parameters ($\times 10^{3}$) for tetrakis[copper(I) benzoate]

Atom	x	y	z	U
$\mathrm{Cu}(11)$	$7627(3)$	5 700(3)	$5388(2)$	a
$\mathrm{Cu}(12)$	$7184(2)$	3 636(3)	$5987(3)$	a
$\mathrm{Cu}(13)$	5 985(3)	3610 (3)	$5114(2)$	a
$\mathrm{Cu}(14)$	$6436(3)$	$5683(3)$	$4499(2)$	a
$\mathrm{O}(111)$	$8904(12)$	5 691(13)	4 407(11)	75(5)
$\mathrm{O}(112)$	8556 (12).	4001 (12)	4900 (10)	60(4)
C(111)	9180 (19)	4 926(21)	$4354(17)$	61(7)
C(112)	$10321(19)$	5 076(20)	3580 (17)	63(7)
C(113)	$10650(19)$	$4259(19)$	3491 (17)	65(7)
C(114)	$11719(21)$	4 492(22)	2 775(19)	77(8)
$\mathrm{C}(115)$	12 386(20)	$5444(23)$	2 230(19)	$77(8)$
C(116)	$12061(21)$	6 223(21)	2 298(19)	75(8)
C(117)	$11019(24)$	6 072(24)	$3013(21)$	94 (9)
$\mathrm{O}(121)$	$5855(12)$	3 285(11)	$7151(10)$	60(4)
$\mathrm{O}(122)$	4943 (11)	3 473(12)	6 407(11)	67(5)
C(121)	$5029(18)$	3 330(18)	7 161(17)	56(7)
C(122)	4 205(17)	3 397(17)	$8151(16)$	53(7)
C(123)	$4211(20)$	$3165(20)$	9089 (19)	72(8)
C(124)	3 428(20)	3 228(20)	10 002(19)	73(8)
C(125)	2 604(21)	3 477(21)	10 104(19)	81(8)
$\mathrm{C}(126)$	$2602(18)$	3 683(18)	9 187(18)	62(7)
C(127)	3 377(17)	3 638(17)	$8258(16)$	$53(6)$
$\mathrm{O}(131)$	7060 (12)	3 783(13)	3 806(11)	67(5)
O(132)	$7372(11)$	5 429(12)	3 305(11)	66(5)
C(131)	$7647(20)$	4 633(21)	3 166(18)	66(7)
C(132)	8 687(18)	4 766(18)	$2300(16)$	54(7)
C(133)	9019 (20)	3 909(20)	$2145(18)$	72(7)
C(134)	$9996(21)$	4069 (20)	$1391(19)$	71 (8)
C(135)	10 676(20)	5 022(22)	0 753(19)	77(8)
C(136)	$10374(20)$	5840 (21)	0 865(19)	74(8)
$\mathrm{C}(137)$	9 368(20)	5 705(20)	1 634(18)	$72(8)$
O(141)	$5595(11)$	$6013(12)$	$5731(11)$	64(4)
$\mathrm{O}(142)$	6 535(13)	$5944(13)$	6 473(11)	78(5)
C(141)	5 747(19)	6 096(19)	6 469(19)	69(7)
C(142)	$5009(17)$	6 293(17)	7 405(16)	47(6)
C(143)	$5079(17)$	6190 (19)	$8319(18)$	67(7)
C(144)	4 366(21)	6380 (21)	9 187(19)	78(8)
C(145)	3621 (21)	6740 (21)	9 240(19)	80(8)
C(146)	3 597(20)	6 893(20)	8 372(19)	72(7)
C(147)	4 255(18)	6 644(18)	7479 (17)	57(7)
$\mathrm{Cu}(21)$	5341 (2)	-0691(3)	$7339(2)$	a
$\mathrm{Cu}_{(22)}$	$6402(2)$	$1406(2)$	$7348(2)$	a
$\mathrm{Cu}(23)$	$5433(2)$	$1056(3)$	$6164(2)$	a
$\mathrm{Cu}(24)$	$4403(3)$	- 1079 (3)	$6112(2)$	\boldsymbol{a}
$\mathrm{O}(211)$	4395 (11)	-0 566(11)	8 619(10)	55(4)
$\mathrm{O}(212)$	5 322(11)	1 145(12)	8 648(10)	56(4)
$\mathrm{C}(211)$	$4554(18)$	0 276(19)	9 077(16)	$52(6)$
C(212)	3 735(16)	0 097(17)	$10160(15)$	42(6)
C(213)	3 921(18)	0 935(18)	10 702(17)	58(7)
C(214)	$3164(20)$	0 760(20)	$11764(18)$	67(7)
$\mathrm{C}(215)$	2 294(20)	-0.183(22)	$12170(19)$	77(8)
C(216)	2 098(22)	-0965(23)	$11679(21)$	88(9)
$\mathrm{C}(217)$	2 837(19)	-0851(19)	10 668(18)	66(7)
$\mathrm{O}(221)$	7595 (12)	1672 (12)	6 126(11)	$70(5)$
$\mathrm{O}(222)$	6 794(11)	$1328(11)$	$5132(10)$	55(4)
C(221)	$7586(19)$	1457 (18)	5 236(17)	57(4)
$\mathrm{C}(2 \dot{2} 2)$	8 556(18)	1450 (19)	4431 (17)	58(7)
$\mathrm{C}(223)$	9 437(20)	$1538(20)$	4577 (18)	76(8)
$\mathrm{C}(224)$	$10357(22)$	1448 (22)	3 783(21)	$92(9)$
$\mathrm{C}(225)$	$10414(21)$	$1330(21)$	$2848(20)$	82(8)
$\mathrm{C}(226)$	$9593(19)$	$1253(18)$	2 682(17)	63(7)
C(227)	$8695(20)$	1291 (19)	3 450(18)	70(7)
$\mathrm{O}(231)$	4 077(11)	0 774(12)	$7184(10)$	56(4)
$\mathrm{O}(232)$	3 231(12)	-0934(13)	$7163(11)$	73(5)
C(231)	3263 (18)	-0107(19)	$7609(16)$	54(7)
C(232)	2324 (16)	-0250(16)	$8559(14)$	37(6)
C(233)	$2313(17)$	0 607(18)	$9051(16)$	57(7)
C(234)	$1432(22)$	0 488(22)	$10008(19)$	83(8)
$\mathrm{C}(235)$	$0589(22)$	-0515(24)	$10460(20)$	87(9)
$\mathrm{C}(236)$	0611 (19)	$-1352(20)$	9 977(19)	71(7)
C(237)	$1479(19)$	- $1232(19)$	$9025(17)$	62(7)
$\mathrm{O}(241)$	$5539(13)$	$-1368(12)$	5 208(11)	73(5)
$\mathrm{O}(242)$	6333 (11)	-0972(11)	$6157(11)$	$59(4)$
$\mathrm{C}(241)$	$6313(19)$	$-1240(18)$	$5346(17)$	58(7)
C(242)	7 190(18)	$-1501(18)$	$4626(17)$	57(7)

Table 1 (continued)

Atom	x	y	z	U
C(243)	7 970(21)	- $1485(20)$	4798 (19)	$77(8)$
$\mathrm{C}(244)$	$8825(22)$	- $1669(22)$	4 086(22)	92(9)
$\mathrm{C}(245)$	8891 (21)	-1966(21)	$3186(20)$	$89(9)$
C(246)	8 089(20)	-1965(19)	2999 (18)	70(7)
$\mathrm{C}(247)$	$7261(17)$	-1717(17)	3 706(16)	$51(6)$

${ }^{a}$ Anisotropic thermal parameters are in Table 2.
calculated structure factors are listed in Supplementary Publication No. SUP 21885 (4 pp., 1 microfiche).*

DISCUSSION

There are two independent tetramers in the asymmetric unit. These are numbered in an identical fashion but with a preceding digit of 1 or 2 . They have similar but not identical structures, based on a parallellogram of copper atoms which are planar to within experimental error (Table 4). The benzoates bridge the four pairs of adjacent copper atoms around the parallelogram and are alternately above and below the plane. This structure
the short diagonal in the two tetramers of $2.968(6)$ and $3.180(5) \AA$. This range of dimensions for the parallelogram of copper atoms suggests that $\mathrm{Cu} \cdots \mathrm{Cu}$ bonding is only of marginal significance within the tetramer and that the bridging benzoate groups are all-important in holding the tetramer together. Certainly this type of Cu_{4} parallelogram is only found with bridging ligands of the carboxylate or triazino-type.

However in tetrakis[trimethylsilylmethylcopper(I)], the four copper atoms are also coplanar but form a square ($\mathrm{Cu} \cdots \mathrm{Cu} 2.42 \AA$) with the methylene carbon atoms lying in the same plane and bridging the edges and are presumably involved in three-centre two-electron bonds. ${ }^{12}$ Ligands such as $\mathrm{S}_{2} \mathrm{CNEt}_{2}$ (diethyldithiocarbamate) and $\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{2}$ (di-isopropylphosphorodithioate) are also capable of bridging adjacent copper atoms in copper(I) complexes and indeed form the tetramers $\left[\mathrm{Cu}_{4}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}\right]^{13}$ and $\left[\mathrm{Cu}_{4}\left\{\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{4}\right]^{14}$ However, these compounds have markedly different structures from

Table 2
Anisotropic thermal parameters $\left(\times 10^{3}\right)$ for the copper atoms in tetrakis[copper(1) benzoate]

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Cu}(11)$	74.8(24)	101.2(28)	73.7(23)	$50.5(22)$	-33.3 (20)	-16.6(21)
$\mathrm{Cu}(12)$	67.2(23)	83.7(25)	67.1(22)	35.2(20)	-30.5(19)	-12.3(19)
$\mathrm{Cu}(13)$	79.2(25)	94.9(27)	53.1(20)	32.8(22)	-31.6(19)	-8.4(19)
$\mathrm{Cu}(14)$	90.1(27)	103.7(29)	60.3(21)	54.3(23)	-36.3(20)	-15.9(20)
$\mathrm{Cu}(21)$	77.5(24)	81.4(25)	59.0(20)	38.1(20)	-42.2(19)	-19.6(18)
$\mathrm{Cu}(22)$	74.0(23)	75.0(24)	55.5(20)	21.8(20)	-33.0(19)	-13.6(18)
$\mathrm{Cu}(23)$	64.5(22)	89.2(26)	64.6(21)	33.2(21)	-33.0(19)	$-10.0(20)$
$\mathrm{Cu}(24)$	81.8(25)	111.4(30)	76.9(24)	56.2(24)	-52.2(21)	-37.2(22)

is illustrated in the Figure. This tetrameric structure is not unique, being also found for tetrakis[(1,3-dimethyltriazino) copper(I)] ${ }^{11}$ (1) and tetrakis[copper(I) trifluoro-acetate]-benzene(1/2), (2). ${ }^{6}$ Only preliminary details of these two structures are available; in (1) the parallelogram has the following dimensions (using our nomenclature) $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ 2.64(1), $\mathrm{Cu}(2) \cdots \mathrm{Cu}(3)$ 2.68(1), $\mathrm{Cu}(3) \cdots \mathrm{Cu}(4) \quad 2.66(1), \mathrm{Cu}(4) \cdots \mathrm{Cu}(1)$ 2.67(1) with $\mathrm{Cu}(1) \cdots \mathrm{Cu}(3) 2.97(1) \AA$ and internal angles of [subtended at $\mathrm{Cu}(1)$ first $] 112.5,67.8,111.7$, and 67.6°. In (2) the structure is of limited accuracy because of disordered CF_{3} groups; internal angles in the parallelogram are quoted as 113.1 and 66.8° with sides of ca. $2.8 \AA$. This latter figure seems rather high but may be an average including one or two diagonals. The dimensions in our two tetramers are very similar to these values. In tetramer 2, the mean internal ring angles are 114.5 and 65.5°, the larger angle being slightly greater than in (1) or (2). However, in tetramer 1 (angles 108.8 and 71.2°), the larger angle is smaller by $c a .4^{\circ}$. These differences are concomitant with $\mathrm{Cu}(1) \cdots \mathrm{Cu}(3)$ distances across

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1976, Index issue (items less than 10 pp . are supplied as full-size copies). \dagger A similar problem is found with the structures of related tetrameric copper(r) halide-phosphine complexes. The series $\left[\left\{\mathrm{Et}_{3} \mathrm{PCuX}\right\}_{4}\right] \quad\left(\mathrm{X}=\mathrm{Cl}_{1},{ }^{15} \mathrm{Br},{ }^{15}\right.$ or I $\left.{ }^{16}\right)$ and $\left[\left\{\mathrm{Ph}_{3} \mathrm{PCuCl}\right\}_{4}\right]{ }^{16}$ have the four copper atoms arranged at the corners of a tetrahedron, the $\mathrm{Cu}_{4} \mathrm{X}_{4}$ unit being of the 'cubane' type. However in $\left[\left\{\mathrm{Ph}_{3}-\right.\right.$ $\left.\mathrm{PCuBr}\}_{4}\right]^{16}$ and $\left[\left\{\mathrm{Ph}_{3} \mathrm{PCuI}\right\}_{4}\right]^{17}$ the structure changes dramatically to a 'step' type with the four copper atoms precisely coplanar. This Cu_{4} planar parallelogram is also found in the structures of $\left[(\mathrm{CuX})_{4}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$) ..^{18}$
our present tetramers both in the mode of co-ordination of the ligands and the geometry of the Cu_{4} unit. One of the sulphur atoms in each ligand bridges two copper atoms almost symmetrically whereas the other forms a bond with a third copper atom. The four copper atoms form a tetrahedron. It is not clear why two such different Cu_{4} arrangements occur with ligands which potentially are capable of acting in an analogous way. \dagger It may be significant that the Cu_{4} planar parallelogram is only known to date in simple compounds in conjunction with first row elements (N for triazino, O for carboxylate, and C for $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$) and the Cu_{4} tetrahedral array only for second row elements (S in the above examples). A consequence of the change in the Cu_{4} geometry is that each copper atom is two co-ordinate in the planar array but is three co-ordinate in the tetrahedral array (neglecting $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions).

In $\left[\mathrm{Cu}_{4}\right.$ (benzoate) $\left.{ }_{4}\right]$, there are no significant differences
${ }^{11}$ J. E. O'Connor, G. A. Janusonis, and E. R. Corey, Chem. Comm., 1968, 445.
${ }_{12}$ J. A. J. Jarvis, B. T. Kilbourn, R. Pearce, and M. F. Lappert, J.C.S. Chem. Comm., 1973, 475.
${ }_{13}$ R. Hesse, Avkiv. Kemi, 1963, 20, 481.
14 S. L. Lawton, W. J. Rohrbaugh, and G. T. Kokotailo, Inorg. Chem., 1972, 11, 612.
${ }^{15}$ M. R. Churchill, B. G. DeBoer, and S. J. Mendak, Inorg. Chem., 1975, 14, 2041.
${ }_{16}$ M. R. Churchill and K. L. Kalra, Inorg. Chem., 1974, 13, 1065,1427 , and 1899.
${ }^{17}$ M. R. Churchill, B. G. DeBoer, and D. J. Donovan, Inorg. Chem., 1975, 14, 617.
18 A. Camus, G. Nardin, and L. Randaccio, Inorg. Chim. Acta, 1975, 12, 23.

Table 3
Dimensions in the two tetramers
(a) copper atoms

(a)	tetramer 1	tetramer 2
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.742(6)	2.719(4)
$\mathrm{Cu}(1)-\mathrm{Cu}(3)$	3.180(5)	2.968(6)
$\mathrm{Cu}(1)-\mathrm{Cu}(4)$	2.720(6)	2.753(6)
$\mathrm{Cu}(2)-\mathrm{Cu}(3)$	2.709(6)	$2.732(6)$
$\mathrm{Cu}(3)-\mathrm{Cu}(4)$	2.756(7)	2.770(5)
$\mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	71.4(2)	66.0(1)
$\mathrm{Cu}(2)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	108.8(2)	114.0(2)
$\mathrm{Cu}(3)-\mathrm{Cu}(4)-\mathrm{Cu}(1)$	71.0(2)	65.0(1)
$\mathrm{Cu}(4)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	108.8(2)	115.0(2)
$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(3)$	53.8(1)	$57.2(1)$
$\mathrm{Cu}(4)-\mathrm{Cu}(1)-\mathrm{Cu}(3)$	55.0(1)	57.8(1)
$\mathrm{Cu}(2)-\mathrm{Cu}(3)-\mathrm{Cu}(1)$	54.8(1)	56.8(1)
$\mathrm{Cu}(4)-\mathrm{Cu}(3)-\mathrm{Cu}(1)$	54.0(1)	$57.2(1)$
$\mathrm{Cu}(1)-\mathrm{O}(11)$	1.835(16)	1.849(13)
$\mathrm{Cu}(1)-\mathrm{O}(42)$	1.856(17)	1.877(14)
$\mathrm{Cu}(2)-\mathrm{O}(12)$	1.862(13)	1.816(12)
$\mathrm{Cu}(2)-\mathrm{O}(21)$	1.854(14)	1.812(13)
$\mathrm{Cu}(3)-\mathrm{O}(22)$	1.815(13)	1.836(13)
$\mathrm{Cu}(3)-\mathrm{O}(31)$	1.838(15)	1.821(13)
$\mathrm{Cu}(4)-\mathrm{O}(41)$	1.863(15)	1.831(18)
$\mathrm{Cu}(4)-\mathrm{O}(32)$	1.833(15)	1.844(16)
$\mathrm{O}(11)-\mathrm{Cu}(1)-\mathrm{O}(42)$	167.0(8)	170.4 (9)
$\mathrm{O}(11)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	82.8(6)	80.0(4)
$\mathrm{O}(11)-\mathrm{Cu}(1)-\mathrm{Cu}(4)$	108.6(7)	109.8(6)
$\mathrm{O}(42)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	102.9(5)	103.9(4)
$\mathrm{O}(42)-\mathrm{Cu}(1)-\mathrm{Cu}(4)$	80.9(7)	76.7(6)
$\mathrm{O}(12)-\mathrm{Cu}(2)-\mathrm{O}(21)$	175.3(9)	172.1(10)
$\mathrm{O}(12)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	82.0(6)	85.1 (5)
$\mathrm{O}(12)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	104.4(7)	105.3(7)
$\mathrm{O}(21)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	98.9(6)	97.0(5)
$\mathrm{O}(21)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	80.3(6)	82.5(7)
$\mathrm{O}(22)-\mathrm{Cu}(3)-\mathrm{O}(31)$	178.5(7)	179.5(7)
$\mathrm{O}(22)-\mathrm{Cu}(3)-\mathrm{Cu}(2)$	84.9(6)	83.0(6)
$\mathrm{O}(22)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	96.4 (6)	99.3 (5)
$\mathrm{O}(31)-\mathrm{Cu}(3)-\mathrm{Cu}(2)$	94.5(7)	97.3(6)
$\mathrm{O}(31)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	82.5(6)	80.1 (5)
$\mathrm{O}(32)-\mathrm{Cu}(4)-\mathrm{O}(41)$	174.6(8)	171.4(9)
$\mathrm{O}(32)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	80.5(6)	82.4(5)
$\mathrm{O}(32)-\mathrm{Cu}(4)-\mathrm{Cu}(1)$	91.6(7)	88.5(7)
$\mathrm{O}(41)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	100.6(5)	101.5(5)
$\mathrm{O}(41)-\mathrm{Cu}(4)-\mathrm{Cu}(1)$	83.8(7)	86.4(7)

(b) dimensions in the benzoates

In tetramer 1	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{O}(\mathrm{n} 1)-\mathrm{C}(\mathrm{nl})$	1.27(4)	1.29(4)	1.26(3)	1.23(4)
$\mathrm{O}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 1)$	1.28 (3)	1.23(4)	1.30(4)	1.31 (4)
$\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)$	1.53(3)	1.47(3)	1.47(3)	1.44(3)
$\mathrm{Cu}(\mathrm{m}){ }^{*}-\mathrm{O}(\mathrm{nl})-\mathrm{C}(\mathrm{nl})$	125.2(12)	124.6(15)	126.6(18)	125.3(19)
$\mathrm{Cu}(\mathrm{m})-\mathrm{O}(\mathrm{n} 2)-\mathrm{C}(\mathrm{nl})$	125.0(18)	122.9(18)	127.9(14)	127.1(17)
$\mathrm{O}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 1)-\mathrm{O}(\mathrm{n} 2)$	124.5(21)	125.9(16)	120.1(20)	122.6(23)
$\mathrm{O}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)$	119.7(19)	115.9(25)	120.6(28)	120.6(29)
$\mathrm{O}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)$	$115.7(27)$	117.3(27)	119.1 (20)	116.7(27)
$\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 3)$	121.5(20)	120.4(21)	120.2(20)	119.9(27)
$\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 7)$	$116.9(27)$	123.0(26)	121.5(27)	123.5(26)
$\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 7)$	121.5(24)	116.6(20)	118.2(21)	116.5(21)
$\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 3)$	$1.38(5)$	1.46(4)	1.43(4)	1.44(4)
C(n3)-C(n4)	1.40(4)	1.37(3)	1.33 (4)	1.36(4)
$\mathrm{C}(\mathrm{n} 4)-\mathrm{C}(\mathrm{n} 5)$	1.31(4)	1.38(5)	1.36(3)	1.39(5)
$\mathrm{C}(\mathrm{n} 5)-\mathrm{C}(\mathrm{n} 6)$	1.33(5)	1.42(5)	1.36(5)	1.35(5)
$\mathrm{C}(\mathrm{n} 6)-\mathrm{C}(\mathrm{n} 7)$	1.39(4)	1.37(3)	1.38(3)	1.38(3)
$\mathrm{C}(\mathrm{n} 7)-\mathrm{C}(\mathrm{n} 2)$	1.37(3)	1.38(3)	1.37(3)	1.38(4)
$\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 4)$	116.7(21)	119.1(30)	$119.2(22)$	118.1(31)
$\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 4)-\mathrm{C}(\mathrm{n} 5)$	121.8(32)	124.0(31)	121.6(31)	124.1(31)
$\mathrm{C}(\mathrm{n} 4)-\mathrm{C}(\mathrm{n} 5)-\mathrm{C}(\mathrm{n} 6)$	121.4(26)	116.1(23)	120.5(24)	117.5(25)
$\mathrm{C}(\mathrm{n} 5)-\mathrm{C}(\mathrm{n} 6)-\mathrm{C}(\mathrm{n} 7)$	120.6(23)	121.7(30)	119.6(22)	$120.9(32)$
$\mathrm{C}(\mathrm{n} 6)-\mathrm{C}(\mathrm{n} 7)-\mathrm{C}(\mathrm{n} 2)$	117.7(32)	122.5(27)	120.7(30)	122.6(28)
In tetramer 2				
$\mathrm{O}(\mathrm{nl})-\mathrm{C}(\mathrm{nl})$	1.32(3)	1.36(3)	1.27(2)	1.25(4)
$\mathrm{O}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 1)$	1.23(2)	1.24(3)	1.30 (3)	1.27(3)
$\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)$	1.48(3)	1.42 (3)	1.43(3)	1.45(4)
$\mathrm{Cu}(\mathrm{m})-\mathrm{O}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 1)$	126.6(10)	124.7(15)	130.0(17)	122.5(16)
$\mathrm{Cu}(\mathrm{m})-\mathrm{O}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 1)$	124.5(15)	126.1(14)	125.4(13)	131.8(20)
$\mathrm{O}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 1)-\mathrm{O}(\mathrm{n} 2)$	123.3(18)	121.3(20)	119.8(18)	122.3(22)
$\mathrm{O}(\mathrm{nl})-\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)$	114.9(16)	115.6(26)	123.9(21)	121.2(24)
$\mathrm{O}(\mathrm{n} 2)-\mathrm{C}(\mathrm{nl})-\mathrm{C}(\mathrm{n} 2)$	121.8(21)	123.1(24)	116.2(17)	116.2(28)

Table 3 (Continued)

In tetramer 2	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
$\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 3)$	$116.9(16)$	$122.4(25)$	$118.4(17)$	$123.0(25)$
$\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 7)$	$124.1(21)$	$122.4(29)$	$122.2(21)$	$119.1(29)$
$\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 7)$	$119.0(18)$	$115.0(24)$	$119.2(17)$	$117.8(24)$
$\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 3)$	$1.40(3)$	$1.43(5)$	$1.37(3)$	$1.33(5)$
$\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 4)$	$1.43(3)$	$1.41(4)$	$1.40(3)$	$1.37(4)$
$\mathrm{C}(\mathrm{n} 4)-\mathrm{C}(\mathrm{n} 5)$	$1.35(3)$	$1.37(5)$	$1.39(3)$	$1.37(5)$
$\mathrm{C}(\mathrm{n} 5)-\mathrm{C}(\mathrm{n} 6)$	$1.30(4)$	$1.36(5)$	$1.34(4)$	$1.39(5)$
$\mathrm{C}(\mathrm{n} 6)-\mathrm{C}(\mathrm{n} 7)$	$1.38(3)$	$1.35(3)$	$1.39(3)$	$1.39(3)$
$\mathrm{C}(\mathrm{n} 7)-\mathrm{C}(\mathrm{n} 2)$	$1.38(3)$	$1.41(4)$	$1.37(3)$	$1.36(4)$
$\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 4)$	$117.7(17)$	$121.0(27)$	$120.2(18)$	$122.2(29)$
$\mathrm{C}(\mathrm{n} 3)-\mathrm{C}(\mathrm{n} 4)-\mathrm{C}(\mathrm{n} 5)$	$118.1(24)$	$118.5(35)$	$119.2(26)$	$122.0(36)$
$\mathrm{C}(\mathrm{n} 4)-\mathrm{C}(\mathrm{n} 5)-\mathrm{C}(\mathrm{n} 6)$	$125.0(22)$	$121.8(26)$	$120.2(22)$	$115.5(28)$
$\mathrm{C}(\mathrm{n} 5)-\mathrm{C}(\mathrm{n} 6)-\mathrm{C}(\mathrm{n} 7)$	$118.6(21)$	$119.8(27)$	$120.5(20)$	$121.4(26)$
$\mathrm{C}(\mathrm{n} 6)-\mathrm{C}(\mathrm{n} 7)-\mathrm{C}(\mathrm{n} 1)$	$121.3(24)$	$123.7(31)$	$120.6(23)$	$120.7(25)$

* m is unspecified but refers to the number of the copper atom to which the oxygen atom is bonded. There is no ambiguity in this abbreviation.

Table 4

Least-squares planes in the form $A x+B y+C z=D$, where x, y, z are the crystallographic fractional coordinates. Distances (\AA) of relevant atoms from the planes are given in square brackets

A	B	C	D
Plane 1 $\mathrm{Cu}(1), \mathrm{Cu}(2), \mathrm{Cu}(3), \mathrm{Cu}(4)$			
tetramer 1	-6.69	4.08	8.97
$[\mathrm{Cu}(1)-0.00, \mathrm{Cu}(2)$	$0.00, \mathrm{Cu}(3)$	$-0.00, \mathrm{Cu}(4) 0.00]$	
tetramer 2	9.54	-4.62	-6.13
$[\mathrm{Cu}(1)$	0.93		

$[\mathrm{Cu}(1)-0.02, \mathrm{Cu}(2) 0.02, \mathrm{Cu}(3)-0.02, \mathrm{Cu}(4) 0.02]$
Plane $2 \mathrm{Cu}(1), \mathrm{Cu}(2), \mathrm{O}(11), \mathrm{O}(12)$

$$
\begin{array}{lllll}
\text { tetramer } 1 & 10.39 & 1.76 & 13.61 & 16.26
\end{array}
$$

$[\mathrm{Cu}(1) 0.00, \mathrm{Cu}(2)-0.00, \mathrm{O}(11)-0.01, \mathrm{O}(12) 0.01, \mathrm{C}(11) 0.07$, C(12) 0.23] $\begin{array}{lllll}\text { tetramer } 2 & 14.04 & -7.40 & 10.63 & 15.79\end{array}$
$[\mathrm{Cu}(1) 0.03, \mathrm{Cu}(2)-0.03, \mathrm{O}(11)-0.03, \mathrm{O}(12) 0.03, \mathrm{C}(11) 0.05$, C(12) 0.19]
Plane $3 \mathrm{Cu}(2), \mathrm{Cu}(3), \mathrm{O}(21), \mathrm{O}(22)$

$$
\begin{array}{lllll}
\text { tetramer } 1 & -0.64 & 12.92 & 1.96 & 5.35
\end{array}
$$

$[\mathrm{Cu}(2) 0.06, \mathrm{Cu}(3)-0.06, \mathrm{O}(21)-0.08, \mathrm{O}(22) 0.08, \mathrm{C}(21) 0.03$, $\mathrm{C}(22) 0.36]$ $\begin{array}{lllll}\text { tetramer } 2 & -3.87 & 13.55 & -1.15 & -1.40\end{array}$
$[\mathrm{Cu}(2) 0.02, \mathrm{Cu}(3)-0.02, \mathrm{O}(21)-0.02, \mathrm{O}(22) 0.02, \mathrm{C}(21) 0.16$, $\mathrm{C}(22) 0.45]$
Plane $4 \mathrm{Cu}(3), \mathrm{Cu}(4), \mathrm{O}(31), \mathrm{O}(32)$ $\begin{array}{lllll}\text { tetramer } 1 & 13.40 & 0.45 & 10.76 & 13.71\end{array}$
$[\mathrm{Cu}(3)-0.02, \mathrm{Cu}(4) 0.02, \mathrm{O}(31) 0.02, \mathrm{O}(32)-0.02, \mathrm{C}(31) 0.16$, $\mathrm{C}(32) 0.62]$
$\begin{array}{lllll}\text { tetramer } 2 & 11.36 & -5.80 & 13.47 & 13.86\end{array}$
$[\mathrm{Cu}(3) 0.00, \mathrm{Cu}(4)-0.00, \mathrm{O}(31)-0.00, \mathrm{O}(32) 0.00, \mathrm{C}(31) 0.16$, C(32) 0.46]
Plane $5 \mathrm{Cu}(4), \mathrm{Cu}(1), \mathrm{O}(41), \mathrm{O}(42)$

$$
\begin{array}{lllll}
\text { tetramer } 1 & 1.46 & 11.43 & -1.62 & 6.73
\end{array}
$$

$[\mathrm{Cu}(1) 0.02, \mathrm{Cu}(4)-0.02, \mathrm{O}(41) 0.03, \mathrm{O}(42)-0.03, \mathrm{C}(41) 0.03$, $\mathrm{C}(42)-0.00$] $\begin{array}{lllll}\text { tetramer } 2 & -0.52 & 11.71 & -3.74 & -3.80\end{array}$
$[\mathrm{Cu}(1)-0.03, \mathrm{Cu}(4) 0.03, \mathrm{O}(41)-0.03, \mathrm{O}(42) 0.03, \mathrm{C}(41) 0.02$, $\mathrm{C}(42)-0.06]$
Angles between planes $\left({ }^{\circ}\right)$

	tetramer 1	tetramer 2
1 and 2	108.0	106.2
1 and 3	82.9	83.0
1 and 4	86.9	86.2
1 and 5	103.2	103.9
$6 *$ and 2	7.4	9.6
6 and 3	16.4	14.3
6 and 4	21.5	15.5
6 and 5	13.4	3.6

* Plane 6 is calculated from atoms $\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 7)$ inclusive.
in the $\mathrm{Cu}-\mathrm{O}$ distances whose mean value is an expected $1.84 \AA$. This is different from that observed in $[\{\mathrm{Cu}-$ $\left.\left.\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)\right\}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]^{6}$ where $\mathrm{Cu}-\mathrm{O}$ distances range between 1.83 and $2.2 \AA$. Details of the geometry of the benzoate fragments are illustrated via the least-squares planes of Table 4 (and the Figure). We have calculated the planes

The two independent tetrakis[copper(I) benzoate] molecules. The numbering scheme of both molecules is identical
containing the pair of oxygen atoms from each benzoate together with the pair of copper atoms to which they are bonded. These four atoms are closely planar and intersect the Cu_{4} plane at angles significantly different from 90° ranging between 108.0 and 82.9°. It is significant (see Table 4 and the Figure) that these angles of intersection are very similar in the two independent tetramers with rings 1 bent away from the Cu_{4} plane (angles $108.0,106.2^{\circ}$ in tetramers 1 and 2 respectively) and rings 3 bent towards (86.9, 86.2°). Also planes 4 are bent away ($103.2,103.9^{\circ}$) while planes 2 are bent towards (82.9, 83.0°). This regularity must be due to intra- rather than inter-molecular contacts. A similar
agreement is found in the dimensions of the two tetramers ($\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles for example) despite the variation in the shape of the Cu_{4} parallelogram.

The angle between the $\mathrm{Cu}, \mathrm{Cu}, \mathrm{O}, \mathrm{O}$ planes and the benzene rings is also variable (3.6-21.5 $)$. However, this is primarily due to the ring being bent out of the plane rather than to any twist around the $\mathrm{C}(\mathrm{n} 1)-\mathrm{C}(\mathrm{n} 2)$ axis. This is made clear by the deviations of $\mathrm{C}(\mathrm{n} 2)$ and to a lesser extent $\mathrm{C}(\mathrm{nl})$ atoms from the $\mathrm{Cu}, \mathrm{Cu}, \mathrm{O}, \mathrm{O}$ plane, and also to the fact that the angles between planes $\mathrm{O}(\mathrm{nl})$, $\mathrm{O}(\mathrm{n} 2), \mathrm{C}(\mathrm{n} 1), \mathrm{C}(\mathrm{n} 2)$, and $\mathrm{C}(\mathrm{n} 2)-\mathrm{C}(\mathrm{n} 7)$ inclusive, are much smaller ($1.6-11.8^{\circ}$).

There are a large number of intermolecular contacts $<3.5 \AA$ and these are listed in Table 5. There are

Table 5
Intermolecular contacts $<3.50 \AA$ not involving hydrogen ${ }^{a}$

$\mathrm{O}(141) \cdots \mathrm{C}\left(242{ }^{\text {I }}\right.$)	3.276	$\mathrm{C}(114) \cdots \mathrm{Cu}\left(12^{\text {II }}\right)$	3.481
$\mathrm{O}(132) \cdots \mathrm{C}(245 \mathrm{I})$	3.403	$\mathrm{Cu}(11) \cdots \mathrm{C}(114 \mathrm{II})$	3.400
$\mathrm{Cu}(14) \cdots \mathrm{C}\left(246{ }^{\text {I }}\right.$)	3.316	C(111) . . C(113II)	3.475
$\mathrm{C}(146) \cdots \mathrm{O}(211 \mathrm{I})$	3.302	$\mathrm{Cu}(12) \cdots \mathrm{C}\left(115^{\text {II }}\right.$)	3.153
$\mathrm{C}(146) \cdots \mathrm{Cu}(21)^{\text {a }}$	3.222	$\mathrm{Cu}(12) \cdots \mathrm{C}\left(116{ }^{\text {II }}\right.$)	3.256
$\mathrm{Cu}(14) \cdots \mathrm{C}(247 \mathrm{I})$	3.364	C(135) $\cdot \cdots$ C(136III)	3.447
$\mathrm{O}(132) \cdots \cdot \mathrm{C}(246 \mathrm{I})$	3.307	$\mathrm{Cu}(13) \cdots \mathrm{O}\left(141{ }^{\text {IV }}\right.$)	3.422
$\mathrm{C}(147) \cdots \mathrm{Cu}(21)^{\text {l }}$	3.366	O(131) $\cdot \cdots$ C(147VV)	3.287
$\mathrm{C}(147) \cdots \mathrm{O}(242 \mathrm{I})$	3.394	$\mathrm{C}(147) \cdots \mathrm{C}\left(131{ }^{\text {IV }}\right.$)	3.338
$\mathrm{C}(145) \cdots \mathrm{O}(211 \mathrm{I})$	3.452	$\mathrm{Cu}(14) \cdots \mathrm{O}\left(141^{1 V}\right)$	3.266
$\mathrm{Cu}(12) \cdots \mathrm{Cu}(23)$	3.465	$\mathrm{C}(215) \cdots \mathrm{Cu}(22 \mathrm{~V})$	3.387
$\mathrm{O}(121) \cdots \mathrm{Cu}(23)$	3.321	$\mathrm{C}(215) \cdots \mathrm{O}\left(221^{\mathrm{V}}\right)$	3.454
$\mathrm{Cu}(22) \cdots \mathrm{O}(121)$	3.080	C(213) \cdots C(211V)	3.495
$\mathrm{O}(231) \cdots \mathrm{O}(121)$	3.471	$\mathrm{Cu}(21) \cdots \mathrm{C}(214 \mathrm{~V})$	3.192
$\mathrm{O}(231) \cdots \mathrm{C}(121)$	3.246	$\mathrm{Cu}(22) \cdots \mathrm{C}\left(216^{\mathrm{V}}\right)$	3.487
$\mathrm{O}(221) \cdots \mathrm{O}(112)$	3.193	$\mathrm{C}(213) \cdots \mathrm{O}(211 \mathrm{~V})$	3.398
$\mathrm{O}(212) \cdots \mathrm{O}(121)$	3.380	$\mathrm{Cu}(24) \cdots \mathrm{Cu}\left(23^{\mathrm{VI}}\right)$	3.313
$\mathrm{O}(231) \cdots \mathrm{O}(122)$	3.475	$\mathrm{O}(241) \cdots \mathrm{Cu}\left(13^{\mathrm{VI}}\right)$	3.259
C(221) \cdots O(112)	3.192	$\mathrm{O}(241) \cdots \mathrm{Cu}\left(23^{\mathrm{VI}}\right)$	3.181
$\mathrm{Cu}(12) \cdots \mathrm{O}(221)$	3.043	$\mathrm{O}(222) \cdots \mathrm{Cu}\left(24^{\text {VI }}\right.$)	3.113
$\mathrm{Cu}(12) \cdots \mathrm{C}(221)$	3.344	$\mathrm{O}(241) \cdots \mathrm{O}(231 \mathrm{VI})$	3.443
$\mathrm{Cu}(12) \cdots \mathrm{O}(222)$	3.321	$\mathrm{C}(247) \cdots \mathrm{O}\left(122^{\mathrm{VI}}\right)$	3.403
$\mathrm{C}(116) \cdots \mathrm{Cu}(22 \mathrm{II})$	3.409	$\mathrm{O}(222) \cdots \mathrm{O}\left(232{ }^{\text {VI }}\right.$)	3.487
$\mathrm{O}(112) \cdots \mathrm{C}\left(112^{\mathrm{II}}\right)$	3.400	$\mathrm{O}(232) \cdots \mathrm{C}\left(227^{\mathrm{VI}}\right)$	3.357
$\mathrm{O}(121) \cdots \mathrm{C}(115 \mathrm{II})$	3.134	$\mathrm{C}(235) \cdots \mathrm{C}\left(235^{\mathrm{VII}}\right)$	3.422
$\mathrm{O}(121) \cdots \mathrm{C}(116 \mathrm{II})$	3.493	$\mathrm{Cu}(22) \cdots \mathrm{Cu}(12)$	3.235

a Roman numerals as superscripts refer to the following equivalent positions relative to the x, y, z set in Table l

$$
\begin{array}{lr}
\text { I } x, 1+y, z & \text { V } 1-x,-y, 2-z \\
\text { II } 2-x, 1-y, 1-z & \text { VI } 1-x,-y, 1-z \\
\text { III } 2-x, 1-y,-z & \text { VII }-x,-y, 2-z
\end{array}
$$

several $\mathrm{Cu} \cdots \mathrm{O}$ contacts among these, the shortest being $3.04,3.08$, and $3.11 \AA$. The shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ contact between tetramers is $3.235 \AA$. It seems improbable that any of these distances represent even very weak interactions. In view of the cylindrical shape of the tetramer, each copper atom is more open to such contacts than a metal atom in a monomeric co-ordination compound and it is therefore not surprising that they are involved in the shortest intermolecular contacts.

We are grateful to A. W. Johans for his help in the crystallographic investigations and to the S.R.C. for a research studentship (R. R.).
[6/958 Received, 20th May, 1976]

[^0]: ${ }^{1}$ A. Pechard, Compt. Rend., 1903, 131, 504; A. Angel and A. V. Harcourt, J. Chem. Soc., 1902, 1385; A. Angel, ibid., 1906, 345.
 ${ }^{2}$ J. Chodowska-Palicka and M. Nilsson, Acta Chem. Scand., 1971, 25, 3451, and refs, therein.
 ${ }^{3}$ T. Cohen and A. H. Lewin, J. Amer. Chem. Soc., 1966, 88, 4521 ; T. Saegusa and I. Murase, Synth. Comm., 1972, 2, 1.

